(x^2 - 2x + 1^2)- 7 > x^2 - 4x + 4
x^2 - 2x - 6 > x^2 - 4x + 4 ( se cancela X^2 con X^2)y queda--->
2x - 10 > 0
x > 10/2
x > 5
Prueba:
FALSO
_ 2(4)-10 > 0
8-10 > 0
-2 > 0
_ 2(-5)-10 > 0
-10 -10 > 0
-20 > 0
VERDADERO
_ 2(6)-10 > 0
12-10 > 0
2 > 0
_ 2(7)- 10 > 0
14 - 10 > 0
4 > 0

8. X^3 > X ^2
x^3/1 = x^2/1
X^3/X^2 > 1
X > 1
Prueba:
FALSO
_ (-1)^3/(-1)^2 > 1
-1/1 > 1
-1 > 1
_ (-3)^3/(-3)^2 > 1
-27/9 > 1
-3 > 1
VERDADERO
_ (2)^3/(2)^2 >1
8/4 > 1
2 > 1
- (9)^3/(9)^2 > 1
729/81> 1
9 > 1

11. 3x+1/x-3 > 0
_ 3x+1
3x= -1
x = -1/3 ---> x > -1/3 x > -0.33
_ x-3
x = 3 ----> x > 3
Prueba:
1.Verdadero
3x+1/x-3 >0
_ 3(4)+1/(4)-3 > 0
12+1/1>0
13/1
13 >0
_ 3(-3)+1/(-3)-3
-9+1/ >0
-8/-6 >0
1.33 > 0
Falso
_ 3(1)+1/1-3 > 0
3+1/-2 >0
4/-2 >0
-2 >

1. 10-5X/2 ≥ 0
-5X ≥ -10(2)
X ≥ -20/-5
X ≥ 4
PRUEBA
Verdadero:
_ -5(1) ≥ -20
-5 ≥ -20
_ -5(-4) ≥ -20
20 ≥ -20
Falso:
- -5(5)≥ -20
-25 ≥ -20
_ -5(9)≥ -20
-45 ≥ -20

4. (X-1)(X+2) < (X+1)/X-3)
X^2+2X-X-2 < X^2-3X+X-3
X^2+X -2< X^2-2X-3 (SE CANCELAN X^2 CON X^2)
X+2X < 2-3
3X < -1
X < -1/3
X< -0.33
Prueba:
Verdadero:
3x < -1
3(-1)<-1
-3 < -1
Falso:
3(1) < -1
3 < -1

21. 2x/1-2x ≤ 3-x/x
2x/-2x+1 ≤ -x+3/x
2x(x) ≤ -x+3(-2x+1)
2x^2 ≤ 2x^2-x-6x+3-->se cancela(2x^2 con 2x^2)y se pasan las x para la izquierda
x+6x ≤ 3
7x ≤ 3
x ≤ 3/7
x ≤ 0.42
Prueba:
veradero:
_ 7x ≤ 3
7(-2) ≤ 3
-14 ≤ 3
_ 7(-9) ≤ 3
-63 ≤ 3
Falso:
_ 7(4)≤ 3
28 ≤ 3
_ 7(1)≤ 3
7 ≤ 3
Intervalo (-infinito,0.42)

33. 3+x≤ x^2-1/x-1
3x-3 ≤ x^2-1/x-1
(3+x)(x-1)≤ x^2-1
3x-3+x^2-x ≤ x^2-1
2x-3+x^2 ≤ x^2-1 (se cancelan x^2 con x^2)
2x ≤ -1+3
x ≤ 2/2
x ≤ 1
Prueba:
Verdadera:
2x ≤ 2
_ 2(-1)≤ 2
-2 ≤ 2
_ 2(-8) ≤ 2
-16 ≤ 2
Falso:
_ 2(4) ≤ 2
8 ≤ 2

31. 2/X-3 + 6/9-X^2 ≤ -1/X
(se eleva todo la expresión ^2)<=4/x^2-3^2 + 6/3^2-x^2=> -(x^2 -3^2)
4-6/(x^2-3^2) ≤ -1/x
-2(x) ≤ -x^2+9
x^2-2x-9 ≤ 0
(x^2-2x+1)-9-1 ≤0
(x-1)^2-10 ≤ 0
x-1 ≤ √10
x ≤ √10 +1
x ≤ 3.16 +1
x ≤ 4.16
Prueba:
Verdadera=
x-1 ≤ √10
_ 4-1 ≤ √10
3 ≤ 3.16
_ (-5)-1 ≤ 3.16
-6 ≤ 3.16
Falso=
_ 6-1 ≤ √10
5 ≤ 3.16
_ 5-1 ≤ √10
4 ≤ 3.16

17. 1/x - x/2x-1 ≥ 1(se multiplican en cruz y luego denominador con denominador)
2x-1-(x)(x)/(x)(2x-1)≥1
2x-1-x^2 ≥ 2x^2 -1x
2x-3x^2-1x-1 ≥ 0
2x-3x^2-1x-1 ≥ 0
x-3x^2-1 ≥ 0
3x^2+x-1 ≥ 0 ------> se saca discriminante
sea a=3
sea b=1
sea c=-1
b^2-4ac
(1)^2-4(3)(-1)
1+12
13 13 ≥ 0 --->tiene 2 soluciones
-b+-√(b)^2-4ac/2a
-1+-√13/2(3)
-1+-3.60/6 x1=-1+3.60/6 = 2.6/6 --> x1=0.43
x2= -1-3.60 =-4.6/6 ---> -0.76 0.43 ≥x ≥-0.76
Intervalo:
(-0.76, infinito) u (0.43 , infinito)